
Pergmon 
J. Appt Maths Mechs, VoL 61, No. 2, pp. 333-337, 1997 

© 1997 Elsevier Science Ltd 
All rights reserved. Printed in Great Britain 

PII: S0021--,8928(97)00042-7 oo21-8928/97 $24.oo+0.0o 

SECONDARY BRANCHING AND THE POST-CRITICAL 
BEHAVIOUR OF THIN-WALLED SHELLS DURING 

NON-UNIFORM DEFORMATION~f 

I. P. Z H E L E Z K O  and N. I. O B O D A N  

Dnepropetrovsk 

(Receired 10 January 1996) 

The non-linear behaviow and post-critical behaviour of thin-walled shells during non-uniform deformation due to a non-uniform 
load or inhomogeneous structure are analysed. The branching equations are constructed and, for the non-linear equations for 
Newton's method, the singular points are classified. The results of calculations and an analysis of the post-critical behavioar for 
cylindrical and spherical shells with inhomogeneities of different forms are given. It is shown that localized patterns of stability 
loss and fracture are due to the existence of isolated equil~dum branches and secondaxy branching of non-linear solutions. 
O 1997 Elsevier Science Ltd. All rights resented. 

It has been established in experimental investigations [1 ] that the post-critical equih'bfium shapes of thin shells can 
be subdivided into general (regular) and local shapes, wave formation in the latter being expressed on only a bounded 
part of the surface. "[~e boundary of the region of e~stence of local post-critical shapes is below that of regular 
states. The true canying capacity of a buckled structure can be estimated by investigating post-cdticnl states of thin- 
walled structures in non-uniform deformation. Previous theoretical analyses of the post-critical behaviour of thin- 
walled structures mainly concern the initial segments of post-critical branches, the buckle patterns being taken as 
the characteristic linear shapes of the bifurcation problem for a homogeneous subcritical state [2]. In the case of 
similar critical loads corresponding to different linear buckling patterns, it has been shown that interaction between 
adjacent shapes might manifest itself in secondary bifurcation of post-critical branches [3]. We have obtained solutions 
of this kind for a medel with two degrees of freedom, corresponding to two adjacent linear shapes. We have not 
made a full non-lineaJr analysis of secondary branching. We have restricted the investigation oflocal buckling to the 
analysis of an example of the formation of a single dent of given shape at loads close to the classical critical value. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  A N D  N U M E R I C A L  M E T H O D  

We consider a geometrically non-linear boundary-value problem of the theory of shells in non-uniform 
deformation. The square of the angles of rotation during deformation is assumed to be not greater than one. The 
corresponding variational problem involves finding the minimum of the functional 
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The integration is carried out over the entire surface of the shell, ~ and rl are the coordinate axes, ~, is the load 
parameter, R 1 and R 2 are the radii of curvature of the undeformed surface in directions ~, rI, A 1 andA2 are the 
Lain6 parameters of the median surface, h is the shell thickness, E is Young's modulus and D is Poisson's ratio. 

Notice that all the resolvents of the theory of shells---the equations of consistency, elasticity and equilibrium, 
as well as the natural boundary conditions---follow from the conditions for functional (1.1) to be stationary. 

The components of the vector U = {u, v, w, T, M} can be represented in the form 

4 

r=l 
[ U~(~j,'q), 

ui~ j~r(rl) = I ~ ( ~  j,1]), 
r=l,3 

r = 2,4 (1.2) 

where ~ is the coordinate of the j th node on the shell generator from which the directrix emerges. 
The coordinate functions H~(~) are taken as Hermite polynomials. 
Applying the Kantorovich procedure to functional (1.1), we can write the resolvent system of equations for 

functions Ut(rl) in the form 

F(Uigj+r,'q,~.) = 0,  r = 1 . . . . .  4; i =  i . . . . .  5 ( 1 . 3 )  

with conditions on the boundaries 11 = ~h, T12 

G(A) = 0, A = {U~(rl)} (1.4) 

For a known value of the vector A, the system of ordinary differential equations (1_3) can be integrated numerically 
by reducing boundary-value problem (1.3), (1.4) to a Cauchy problem. Thus, if conditions (1.3) are satisfied in 
advance, the solution of the problem of a minimum of functional (1.1) will reduce to determining A, by Newton's 
method for example 

A (k+l) = Atk) _ G~IG(A <k ) ) (1.5) 

GA={aGi/aAj}, i , j =  1,2 . . . . .  n 

where A (k) is the kth approximation to the solution, GA is the Jacobian, and n is the order of the resolvent. If 
conditions (1.3) are satisfied in advance, the branching condition of the boundary-value problem corresponding 
to variational problem (1.1) has the form 

det G A = 0 (1.6) 

What type of branch point it is (a limit point or bifurcation point) is determined by equating to zero the minors 
of the matrix Gx obtained from the Jacobian G.4, augmented by the column aG/a~ 

When det G.4 = 0, rank G~ = n, it is a bifurcation point; when det GA = 0, det Bx~ ~ 0, where Bx~ is any minor 
of order n of the matrix C~ it is a limit point. 

Thus, algorithm (1.5) can be used to find and classify the branching points and solve problem (1.1) at the same 
time. 

2. N U M E R I C A L  C O N S T R U C T I O N  O F  T H E  B R A N C H I N G  E Q U A T I O N  

In cases where the singular point is a limit point, the post-critical branch of the solution can be constructed by 
changing the independent parameter for continuing the solution. However, if the singular point is a bifurcation 
point, the branching equation must be obtained before the post-critical branch can be constructed [4]. Assuming 
that the condition G(A °, Z, °) = 0 is satisfied, the solution (A °, ~,°) is known, and the solution (A ° + ,~, ~,° + ~.) 
corresponds to the post-critical point, if the rank of thematrix (~,(A °, Xo ,~, ~,) constructed for the solution (A ° + 
A, ~.° + ~.) at branching point (A °, k°) is equal to r and A -- {A1, A2}, where A1 is a vector of order r and -~2 is a 
vector of order n - r, the branching equation has the form [4] 

R ( A 2  ) = (B21Bi-IICI - C2  ) ~  + QIB21Bi-~ - Q2  = 0 (2.1) 

for 
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where Q1, Q2 are the highest terms of the series 

C = {Ct ,C2 }r = ~ 
( OGi (A°''~'~) ] 

li° : t  : 
Bu, Bx2 are the minors of matrix B of order r, and Bza, !i22 are the minors orB of order n - r. 

Since the resulting equation does riot contain linear terms in Az [4], it does not have a unique solution for A2. 
A solution starting lfrom the bifurcation point is constructed numerically. The vector A2 is found from the branehmg 

equation by Newton"s method. The vector A2 is used as the vector argument. The vector Az is computed using 
formula (2.4), disregarding terms of the highest order of smallness. The vector Az is determined by Newton's method 
from the system of equations (2.1) 

/~k(2k + I ) _ ~ ( k )  i1-1 o ¢ ~ ( k ) ,  ~ 
- - ' ~ 2  - - ~  + ' t ~ 2  J (2.3) 

The increment of the load parameter is given a small fixed value. 
The vector A2, determined with prescribed accuracy, and the vector k,1, computed using formula (2.2), are used 

for the initial approximation to continue the solution along the post-critical branch using algorithm (1.5). 

3. R E S U L T S  

We used the algorifl~an to construct solutions of the problem for the advanced post-critical stage of the deformation 
of shells of different kinds and to determine how those solutions change, depending on the type of non-uniformity 
of the deformation. 

Figure 1 shows the pattern of post-critical solutions for a cylindrical shell with axisymmetric applied pressure. 
Here W is the maxiraum deflection relative to shell thickness and X is the load parameter relative to its critical 
value, determined from the linearized problem. 

With a load X -- 1 on branch OA, corresponding to the initial axisymmetric state, we reach bifurcation pointA. 
The branchABCD corresponds to the post-critical regular solution (deflection 1); the lower boundary of existence 
of the regular shape is X -- 0.72. The secondary branching point B is fixed on branchAD with a level of the amplitude 
of the deflection W =: 4. The shell deflection pattern corresponding to the solution BE is very localized: the extent 
of localization--the depth of the dent--increases and the amplitude of the regular component decreases with 
distance firom the bifiLrcafion point B along BE. The lower boundary of the eKstence of a pattern of local equilibrium 
with one dent (deflo~ion 2) corresponds to the load ~. = 0.53. 

There is another secondary branching point C with a localized branching solution, at the level of amplitudes of 
the regular solution W -- 8, but in this case there is a group of dents which is symmetric about the two orthogonal 
meridional planes (deflection 3). The corresponding branch of the diagram is FCF and the lower critical load is 
X = 0.62. Thus there is one zone in which only regular post-critical patterns form and one where localized buckling 
occurs, its lower boundaries lying below the lowest level of perturbed loads for a regular pattern. If the load has 
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a non-a~fisymmetric component q = (g/2)( 1 + cos(n~)), the pattern of post-critical deformation is partly destroyed-- 
bifurcation point A becomes a limit point, and bifurcation points of type B and C move to the initial ascending 
branch (Fig. 2). For instance, in the case n = 8 the solution with a deflection with one local dent branches at the 
lowest bifurcation point of the post-critical regular solution ~, = 1.39; the second critical load ~. = 1.42 correspond 
to branching with a group of local dents. The curves Z - W preserve their character and remain descending. 

It should be emphasized that the solutions which describe local bending exist in the neighbourhood of regular 
deflectional solutions, whatever their nature---whether the pattern that develops is pre- or post-critical. The way 
in which the bifurcation pattern changes depends on the parameterp, equal to the ratio of variability of the regular 
solution of type 1 to that of the load function n. Whenp > 1, the branching pattern has the form shown in Fig. 2, 
whenp ~ 1, the diagram spfits into upper and lower branches, and the lower branch has a limit point. 

The deformation pattern for spherical segments was previously observed to change with the geometric parameter 
p in a similar way [5]. 

The branching pattern becomes very much more complicated in the case of two-layer shells which separate on 
one part of the surface, where the layers might deform separately. 

Thus, Fig. 3 shows the pattern of ~. - W for a two-layer spherical shell with a separated part. The point B here is 
both a limit point for the solution of type I and a bifurcation point for the solution of type 2. The curve has a l imit  
point of its own, corresponding to general buckling of the shell with a localized buckled layer (deflection 3). The 
curveABC corresponds to a prcr.e~ of deformation in which the layers maintain contact up to the ~ u m  value 
~, = 0.72. The deflection is similar to post-critical deflections of a spherical segment of the same geometry without 
a separation zone. The critical load is also very nearly the same as that for a monolithic shell with the same geometry. 

As the stratification parameters vary, there is a considerable change in the branch DEF, which describes the 
equilibrium states with a buckled layer. Thus, as the relative separation thickness hl/h increases (hi is the thickness 
of  the layers and h is the thickness of the packet), the branch of type D E F  degenerates and disappears (Fig. 4) 
when hl/h = 0.24. 

The relative thickness at which a local loss of stability is impossible depends on the dimensions of the separation 
zone. The stable value of the limiting relative thickness at separation angles q~a = 0.09 is associated with the presence 
of a resonance angle of shopping. As we have shown, for separation angles greater than this resonance angle Ipa, 
the values of the lower limiting loads and the shape of isolated curves do not change near those loads. For large 
cpa, however, this resonance angle remains almost constant in value and, as Fig. 5 shows, ~Pa~ = 0.09 for hflh = 0.25. 
For the specified geometry with ~Pa, = 0.09, the limiting relative thickness is not more than 0.24. 
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For a cylindrical shell with a rectangular separation zone exposed to a uniform applied pressure, there is a 
considerably narrower range of shapes with a buckled lower layer. This appears to be due to the lower level of 
compressive stresses and the fact that the ratio of the critical loads of the whole shell and of the panel corresponding 
to the separated part is different from that for a spherical shell. 

Even in cases where no localized loss of stability has been discovered, separation destroys the branching pattern 
of  Fig. 1. For a shell with L/R = 4, R/h = 150, L/x s = 10, R/ys = 2.5, h 1/h = 0.1 (xa and Yz are the separation lengths 
in the longitudinal and transversal directions, respectively) the layers in the separation zone move parallel to one 
another, but the initial branch 1 (deflection 1) is joined by the isolated branch 2-3, where regular deflections of 
shapes 2 and 3, respectively, occur (Fig. 6). Lessening of stiffness leads to a reduction in the critical load on the 
initial branch to g = 0.84. 

The solutions in the buckled lower layer were obtained for a shell with L/R = 6, R/h = 50, L/x s = 5, hl/h = 0.1 
(Fig. 7). In this case the initial branch with regular shape 1, for which the layers move together, have a branch 
pointA with g = 0.9~2 and deflection ampfitude W = 2.5. For non-layered parts of the shell the bending pattern 
of the shell corresponding to branch BAC (form 2) is similar to form 1, the local deflection of the buckled layer 
increasing as we move along BC. 
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